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In previous studies of the compact rotary vane attenuator, the possible error
due to stator vane misalignment was not considered. It is shown in this article
that even though the stator vanes are misaligned with respect to each other, the
boresight error calibration procedure will tend to cause the residual attenuation
error to reduce to a type B error which is generally negligible. This analysis applies
to conventional as well as to compact rotary vane attenuators.

l. Introduction

At the Jet Propulsion Laboratory it has been recognized
for several years that, for purposes of antenna gain and
noise temperature calibrations, it is desirable to incor-
porate a precision rotary vane attenuator (RVA) in the
receiving system. The RVA would enable power ratio
measurements to be made by RF substitution methods
and therefore reduce the present requirements for ampli-
fiers with a high degree of linearity over a large dynamic
range. The “front end” of the deep space communication
antenna systems operating at 2.3 GHz utilizes WR 430
waveguide components that are assembled inside a Cas-
segrainian cone housing. Due to the need to keep the
waveguide losses to a minimum, the installation of a con-
ventional WR 430 RVA [1.2 to 1.5 m (4 to 5 ft) in length]
was not considered practical. The requirements for a
shorter low residual loss unit promoted the development
of the compact RVA.

In Ref. 1, the results of tests on a test model compact
RVA were presented. The test model that was developed
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in WR 112 waveguide size may be seen in Fig. 1. Excellent
agreement was obtained between experimental and theo-
retical attenuations of the compact RVA which had a
total dynamic range of about 30 dB. The theoretical atten-
uations were computed from a modified law that was
derived for compact RVAs. It was shown in Ref. 2 that
the same modified law could be used to extend the accu-
rate dynamic attenuation range of a conventional RVA.

In previous studies of the compact RVA, the possible
error due to mutual misalignment of stator vanes was not
considered. In this article it is shown that it is permissible
to neglect the effect of misaligned stator vanes if the de-
scribed boresight error calibration procedure is used.

ll. Modified Law

As derived in Ref. 3, the modified attenuation law for
rotary vane attenuators is

A = —10logy, [cost 6 + 1024320 (2 cos ¢ cos? 4 sin? §)
+ 10-Las/20gin+ §] (1)
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where

L.z = attenuation (in decibels) at § = 90 deg relative
to the attenuation at § = 0 deg

¢ = phase shift at the rotor output at ¢ = 90 deg rel-
ative to the phase shift at § = 0 deg

and
=0+ a + a (91) (2)

where

6; = indicated vane angle

a; = boresight error (difference between indi-
cated and actual zero-degree vane angle
positions)

a, (4;) = rotary vane angle runout error calibrated
relative to 6, = 0 deg setting.(This error is
a function of 4, and is due to gearing
errors, bearing runout, eccentricities, etc.)

It should be pointed out that the parameters L and ¢
are frequency sensitive. However, their values over a
broad band of frequencies can be calibrated rapidly and
economically by an automatic network analyzer.

The vane angle errors «;, and a, (¢;) must also be cali-
brated to ensure that the attenuator follows the law given
by Eq. (1). A procedure for calibrating runout error a. (6;)
was previously described in Ref. 3. The method for cali-
brating the boresight error a; will be described in this
article.

It is of interest to examine some special cases of the
modified law which are important to consider in bore-
sight error calibrations. Analysis of Eq. (1) will reveal
that, when cos ¢ < 10-%43/2° the incremental attenuation
will become a maximum at a vane angle setting less than
90 deg and have a maximum value greater than Lqs. The
following relationships apply for cos ¢ < 10-Few/20;

(AdB)max = Adp I 0=6y

~ Lun + 10oge (L — 2V Lcos¢ + 1>

Lsin* ¢
where

L = 10%s/10 (4)

1—VLcos¢
63 = cos™
u = C08 \/L —2YLcoso +1 )
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If cos ¢ = 10-Las/20,
(AdB)mux = LdB (6)
By = =/2 (7

Figure 2 illustrates the maximum attenuation character-
istics of a compact RVA having a value of Lqgs equal to 30.
These curves were generated by the Univac 1108 com-
puter® using the modified attenuation law equation. It is
of interest to note in the family of curves that when ¢
is in the region 88.2° =|¢|=180°, the maximum attenua-
tion is greater than Las and will occur at a vane angle
setting which is less than 90 deg.

lll. Boresight Error Calibration Equations

Substitution of sin*§ = 1 — cos® # and algebraic manip-
ulations of Egs. (1) and (2) will lead to the explicit rela-
tionship for «, given as

a; = +arccos

* — 0 — e (8) (8)

where

= oA (8a)
2cosp 1
A=1- + = 8b
_ofcosé _1_
B= 2<VT L> (8c)
C= 1_ 10-4av/20 (8d)
L

and L was previously defined by Eq. (4).

The plus sign shown in Eq. (8) is chosen if 6, has a
positive value and the minus sign is chosen if §; has a
negative value. For most cases, the plus sign shown in
Eq. (8a) is applicable. The minus sign in Eq. (8a) is used
only for special cases where cos ¢ < 10-2e2/2° and the vane
angle setting falls in the region 8y < |8| < =/2, where fx
is given by Eq. (5).

*Computer program written by T. Cullen of the Communications
Elements Research Section.
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IV. Boresight Error Calibration Procedure

The procedure used to calibrate o, of the compact RVA
is identical to the one described by Larson (Ref. 4) for
conventional RVAs except that measured attenuation
values are substituted into the above general a, expres-
sion derived from the modified law rather than from the
cos® § law. It is necessary that an initial approximate cali-
bration of La and ¢ for the compact RVA be obtained.
Then, the a, calibration procedure is to measure the in-
cremental attenuation at a 6, setting and substitute the
measured value for A in Eq. (8d) and compute «, from
Eq. (8). After computing «, values based on measured
attenuations at several 6, settings, an average value of a,
is computed. For best accuracy, use of data obtained at
vane angle settings close to minimum and maximum
attenuation regions should be avoided.

Due to the fact that attenuations of a compact RVA
deviate significantly from the cos*4 law even at vane
angle settings as low as 20 deg, the use of the more gen-
eral «; expression (given by Eq. 8) is recommended for
accurate calibration of «.. As will be shown later, a bene-
ficial outcome of the use of the described calibration
procedure is that, if the stator vanes were misaligned
with respect to each other, the effect of this misalignment
would tend to reduce to a type B (Ref. 5) error which is
generally negligible.

Since a, is a mechanical misalignment angle, its value
can be determined from RF calibrations at a single
frequency if internal reflection errors are small. Using
8448-MHz calibrated values of L.; and ¢ and measured
attenuation values in the general e, expression, average
values equal to (0.0064 #0.0018 55) degree and (—0.178 =
0.004 sz) degree were calibrated for the test model com-
pact RVA (Fig. 1) in the tapered and stepped transition
configurations, respectively. The symbol s; denotes the
calculated standard error based on the number of mea-
surements. The average «, value for each configuration
was based on measured attenuations at 27 different vane
angle settings (between 19 and 80 deg). The differences
of the a, values for the two transition configurations were
attributed mainly to differences in the mechanical align-
ments of the stator vanes.

where the angles are expressed in radians and

V. Effect of Stator Vane Misalignment

The purpose of this analysis is to show that if the stator
vanes were misaligned with respect to each other, the a,
calibration procedure will cause the actual rotor index
plane to be established at a plane located approximately
midway between the two stator vanes. By establishing
the rotor index at this plane, a good fit will result between
measured attenuations and the modified law.

Figure 3 depicts the geometry of a general stator vane
misalignment case. An arrow at the end of an arc indi-
cates the plane to which the angle is measured with
respect to the reference plane located at the beginning
of the arc. When the arrow points in a counter-clockwise
direction, the angle has a positive value in the equations
presented in this analysis. For the general stator vane
misalignment geometry of Fig. 3, the equation for theo-
retical attenuations (relative to minimum attenuation) can
be derived as

At = —20log;o | cos 8, cos (8, + §’)

el?
+ —=sind,sin (4, + ¢’)

VI (9)

where
=0+ (0;) +8=0—a, +8 (10)

and

3 = angle between the output stator card and the
indicated rotor index plane, rad

6" = angle of misalignment between stator vanes, rad

Other angles used in this analysis were previously defined
by Eq. (2) or can be defined from Fig. 3.

In the absence of internal reflections, the measured
attenuation values will closely follow those given by
Eq. (9). Substitution of Eq. (9) for A in Eq. (8d) and
computations of «, using Eq. (8) at many vane angle
settings will result in an average a, value of

(11)

o

iz1 cos* §; —
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and

0/
0i=91+8+5 (13)

The derivation of Eq. (12) is involved and therefore
presented separately in the Appendix of this article. The
approximate formula given by Eq. (11) is useful for show-
ing the relationship between §’ and the calibrated «,
value. For most compact RVA cases likely to be en-
countered in practice, the accuracy of the approximate
formula for @ will typically be better than 0.001% The
approximate formula becomes inaccurate when vane
angle settings approach 4 =0, »/2, and 8y, which was
defined by Eq. (5).

From the geometry of Fig. 3 and substitution of
Eq. (11), one can obtain
6 _
a0=9'+3—a1z")——€ (14)
The last expression shows that the new rotor index plane,

established by the boresight error calibration procedure,
will be located approximately midway between the two

stator vaues. If the rotor index were located exactly mid-
way between the stator vanes, the associated attenuation
error would be called a type B error (Ref. 5) whose mag-
nitude is very small when ¢’ is small.

Figure 4 is a sample computer program printout that
illustrates the small residual difference between measured
and corrected attenuations that results from the boresight
calibration procedure even when stator vanes are signifi-
cantly misaligned. Numerical values as computed from
the approximate and exact formulas for «, are also
compared.

V1. Conclusions

It has been shown that even when the stator vanes of a
rotary vane attenuator are misaligned with respect to each
other, the boresight error calibration procedure will tend
to cause the residual attenuation error to become negli-
gibly small.

A restriction on the analysis is that the effects of internal
reflections must be small. If transitions used on the RVA
have VSWRs of 1.02 or less, the effects of internal reflec-
tions can be neglected.
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Appendix

Derivation of Approximate o, Formula for Misaligned Stator Vane Case

Derivation of the approximate formula given by Eq.(12)
is laborious and the details are involved. However, due to
the importance of the approximate formula and the in-
sight it provides for stator vane misalignment analysis,
details of the derivation are presented here. The same

analysis applies to conventional as well as to compact
RVAs.

It was found from studying numerical results from a
computer that substitutions of Eq. (9) into Egs. (8a)
and (8) generally produced the result

0/
“=8+7 +e (15)

where ¢ is very small compared to ¢’. It is difficult to prove
this result analytically from direct analysis of Eq. (8).
However, an approximate formula for € was derived by
use of the following indirect but equivalent method. Let
the expression for «; as given by Eq. (15) be substituted
into Eq. (10). Then, further substitution of Eq. (10) into

Eq. (9) results in
g — —-6’ - g —6, -
cos 5 —€)cos| 6+ 5 €

eit 8’ . &
+ ——sin({f——=—€)sin{ 9+ —¢
VL 2 2

From use of trigonometric identities and the assump-
tions that 6" and € are small radian angles, the following
approximate formula can be derived:

Als = —10log,

(16)

A:lB o>~ — 10 logm

ei?
(cos2 0 + ——sin? 0)
VL

+ oz 17
—— |z + 2

(s~ T = 20) (17
where

z=¢€sin26 — k (18)

8\

k= (5) (19)
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As was previously described, the exact procedure for
determining o, is to substitute Eq. (16) into Eq. (8d) and
compute «, from Eq. (8). The approximate equivalent
procedure is to equate Eq. (17) to the modified law; then
solve for € and then substitute the derived expression for
€ back into Eq. (15).

As a result of equating Eq. (17) to the modified attenua-
tion law which can also be expressed as

is 2
A = —10log,, | cos? 6 + ‘{e/:L sin® 4 (20)

a quadratic equation? of the form
azt +bz+c=0 (21)

is obtained. For compact and conventional RVAs the
condition b* >>> 4ac nearly always applies and, there-
fore, the approximate solution of the quadratic equation
z= —¢/b can be used. Using this approximation and
omitting higher order terms and then solving for e yields
the expression

0—' * 2 <COS_¢ cos? 8 + = 6)
2 VL L

in 24 1
s cos?§ — cos;{; cos 280 — — sin® g
VL

L
(22)

where €, §” are expressed in radians. For convenience of
computations, one can substitute § = ¢, + § + ¢’/2 in
Eq. (22) and sacrifice only a small loss of accuracy.

*If u and v are general complex expressions and [u + v|* = |u]?,
then the condition |v|* + 2 Re [uv'] = 0 must hold. The symbol
(*) denotes complex conjugate.
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PRECISION ATTINUATOR

Fig. 1. Test model compact RVA shown with interchangeable transitions
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Fig. 2. Compact RVA attenuator curves for Lgs = 30
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Fig. 4. Sample printout of computer program showing relationship of 4 to o,
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